Why measuring pi by counting pixels doesn’t work

Jim Hall, MS
Technically We Write

ABSTRACT

This paper explores a naive approach to “measure” the value of pi
by counting pixels on a screen to approximate the circumference.
This approach does not yield the correct value of pi. This paper shows
the flaws in the approach and why the calculated value is similar to
but different from the pi=4 estimation using a square to approximate
the circumference. The paper concludes by demonstrating another
program that counts pixels inside a circle to estimate the area, which
results in a more accurate calculation of pi.

1. Introduction

I used to write for Opensource.com,
and every year on Pi Day (March 14, or
3/14) various authors would write at
least one article about 7. Several years
ago, I wrote an article about how to cal-
culate the value of 7 by writing a pro-
gram to draw a circle to the screen,
“measuring” the circumference of the cir-
cle by counting the pixels, then calculat-
ing the value for 7 by dividing the cir-
cumference by the diameter:

C=2nr=nd
the value of 7 may be calculated as:
C

mT=—

d

I thought this would be a fun article to
write. I didn’t think I would calculate the
exact value of 7, but I thought the an-
swer would be “close enough” and I could
move on to other articles.

I didn’t expect the value to completely
wrong. It wasn’t even close. The calcula-
tion didn’t improve by performing the
same “measurement” at higher resolu-
tions.

2. Method

To calculate this value of 7, I wrote a
short program using the Open Watcom C
compiler on FreeDOS. I used a DOS pro-
gram for this because using graphics
mode in DOS is far simpler than manip-
ulating graphics and counting pixels on
other, more modern platforms like Linux.
Entering graphics mode using Open
Watcom C on DOS only requires only the
_setvideomode (mode) function, using
a value like _VRES16COLOR for the mode
value to use 640 x 480 graphics with 16
colors, or _SVRES256COLOR for 800 x 600
or _XRES256COLOR for 1024 x 768 graph-
ics with 256 colors. Using graphics on
other platforms such as Linux requires
initializing a graphics library with a long

92-

list of prerequisites, which results in
much more complex code than I wanted
to write for a simple “measure pi by
counting pixels” article.

Drawing to the screen is also straight-
forward using DOS, like the _set-
color (color) function to set the draw-
ing color to a 4-bit iRGB value, such as 7
for white or 15 for bright white, or _el-
lipse (method, «x1, yl1, x2, y2)
function to draw an ellipse starting at
x1,y1 at the upper-left corner to x2,y2 at
the lower-right corner. Using _ GBORDER
for the method draws only the outline of
the ellipse; using _GFILLINTERIOR
draws a solid ellipse. To draw a circle,
set the x distance to the same as the y
distance; on a 640 x480 screen, _el-
lipse (_GBORDER, 0, 0, 479, 479)
draws the outline of a circle with diame-
ter 480 starting at the upper-left corner
of the screen.

To estimate a “measurement” of the
circumference, the program iterated
through all coordinates on the screen,
and used the _getpixel (x, y) func-
tion to retrieve the color at each x,y coor-
dinate. If the pixel had a color, the pro-
gram counted it as the border of the cir-
cle. The total pixel count was used as
the circumference, and the width of the
circle was the diameter. Thus, the pro-
gram calculated a value of 7 by dividing
the circumference by the diameter:

C

T=—

d
3. Result

At 640 x 480 resolution, the program
counted 1356 pixels for the “circumfer-
ence” of a circle with diameter 480 pix-
els. This is a calculated value of:

1356
=——=2.82
Vs 430 825

Using a higher resolution at 800 x 600

pixels, the program counted 1696 pixels

for the “circumference” and thus calcu-
lated:

. 1696

600

At the maximum DOS resolution of

1024 x 768, the program counted 2172

pixels for the “circumference” for a calcu-

lated value of:
_ 2172

= —— =2.82812
w 768 828125

A program to count pixels to calculate

= 2. 82666666667

#include <stdio.h>
#include <graph.h>

int main ()

{

int x,y;
unsigned long count = 0;
if (_setvideomode (_XRES256COLOR) == 0)

return 1;

_setcolor (7);

ellipse (_GBORDER, 0, 0, 767, 767);

for (x = 0; x < 768; x++) {
= 0; yv < 768; y++) {

> 0) |

for (y
if (_getpixel(x, V)

count++;

_setvideomode (_DEFAULTMODE) ;

printf ("pi = C/d = %$1d/768 = %fO0,

count, (float)count / 768.0);

return 0;

/* text */

4. Analysis

Counting pixels to “measure” the cir-
cumference of a circle is a naive ap-
proach. The issue is similar to the m=4
estimation, which starts by drawing a
square as a rough approximation of a cir-
cle:

To more closely approximate the cir-
cle, the estimation “folds” down each cor-
ner of the square to just touch the circle:

The naive assumption with this esti-
mation is that, as the “steps” become in-
finitesimally small, the perimeter of the
drawn lines approaches the actual cir-
cumference of the circle. However, the x
and y components of each “step” still add
up to the perimeter of the original
square. The “circumference” of this esti-
mation remains the perimeter of the
original square.

For a unit circle, each side of the
bounding square has length 2, and a
perimeter of 2 x4 or 8. Thus, the result-
ing calculation of 7 is:

C 8
= d 39" 4
Counting pixels

The estimation using pixels to draw
the outline of a circle, then counting the
pixels for the “circumference” is similar,
but made worse by the fact that pixels
are points, and do not have both an x
and y dimension. Each pixel is therefore
an estimate in one dimension, where the
“outline” method is an estimate in two
dimensions: x and y.

Calculating the expected value by
counting pixels requires understanding
how the _ellipse function draws cir-
cles using pixels. The diagram shows a
low resolution circle drawn in 320 x 200
graphics mode, so the cropped image is
200 pixels on each side. Close examina-
tion shows that the drawing algorithm
places pixels horizontally at the top and
bottom of the circle, and vertically on the
left and right. Between these sides, the
drawing algorithm places pixels diago-
nally. This placement is significant be-
cause at a midpoint on the arc between,
for example, “left” and “top,” the drawing
algorithm does not place more than one
pixel in a vertical arrangement.

4-

This allows calculation of the expected
number of pixels from the midway point
to the top by calculating the unit x dis-
tance from this midpoint to the center
line of the circle, to calculate a “slice” of
the circle. Because pixels are points, the
integer value of this distance should
equal the number of pixels that the
drawing algorithm would generate for
this arc.

Further, because the circle is symmet-
rical, and because this is a one-eighth
“slice” of the circle, multiplying the value
by 8 should equal the total number of
pixels produced by the drawing algo-
rithm.

The distance

In a circle of radius r, the midpoint an
arc is at the location where x; = y;. This
is also the angle 6 = 7/4. For example:

Only the x; component is interesting
for this calculation. Because x; = y;, the
value x; should be equal to one-eighth
the “pixel” count for the circle.

The circle drawn at the highest possi-
ble DOS resolution of 1024 x 768 has a
diameter of 768 pixels, or a radius of
384. Thus the length of x; can be calcu-
lated:

T T
= — =384 % —
X1 r COS 4 COS 4

This calculation is for a one-eighth
slice of the circle. Multiplying times 8
gives the final result:

8><x1:8><384><cosg

_5-

This calculation results in the floating
point value 2172.23203180507, approxi-
mate. Because pixels are points and
counting pixels is an integer value, the
final expectation value of the number of
pixels in a drawn circle is the integer
value 2172. This matches the number of
pixels counted by the DOS program as
the circumference, when drawn in
1024 x 768 graphics resolution.

Further, if the diameter is 768, then
we can complete the calculation for this
expected approximation of r as:

C 2172

d 768

This is the same calculation of 7 as
used in the DOS program. But at least
it’s nice to know where the values came
from.

=2.828125

5. Discussion

Counting pixels for the circumference
of a circle is a naive way to calculate a
value for m, but a slightly different
method generates much more accurate
results: counting pixels for the area of a
circle. Using the area in this calculation
is a better approximation, because as the
pixels become smaller at higher resolu-
tions, the pixels that fill the area ap-
proaches the area.

Writing a program to calculate pi in
this way requires only a minor modifica-
tion to the original program: instead of
__GBORDER for the method to draw the
circle, use _GFILLINTERIOR. That para-
meter changes the behavior of the _el-
lipse function to fill the interior of the
circle. With that change, counting pixels
presents an estimate of the area. Using
this as an estimate of the area, the pro-
gram can calculate 7 using:

A = mr?

and:
_A
7
Working in 1024 x 768 graphics mode,
the new version of the program counts
463488 pixels in the area of a circle with
diameter 768. Dividing the count by the
radius (384) twice to effect the square of
the radius without overflowing variable
limites, the program calculates the value
of m as 3.143229, which is not bad for
counting pixels to calculate 7.

Updated program to count pixels to calculate 7
#include <stdio.h>

#include <graph.h>

int main ()

{

int x,y;
unsigned long count = 0;
if (_setvideomode (_XRES256COLOR) == 0)

return 1;

_setcolor (7);

_ellipse(_GFILLINTERIOR, 0, 0, 767,
for (x = 0; x < 768; x++) {
for (y = 0; y < 768; y++) {
if (_getpixel(x, y) > 0) {
count++;
}
}
}
_setvideomode (_DEFAULTMODE); /* text */
/* 768/2 = 384 */
printf("pi = A / r°2 = %$1d / r"2 = %f0,
count, (float)count/384.0/384.0);

return 0;

767) ;

